Skip to main content

New Study Reveals Clues Behind Twisted Graphene Superconductor

Scientists at The Ohio State University have produced new evidence of how graphene, when twisted to a precise angle, can become a superconductor. In a study published in the journal Nature, the team reported on their finding of the key role that quantum geometry plays in allowing this twisted graphene to become a superconductor. Graphene is a single layer of carbon atoms, and in 2018, scientists discovered that, under the right conditions, graphene could become a superconductor if one piece of graphene were laid on top of another piece and the layers were twisted to a specific angle. This creates twisted bilayer graphene.



However, the conventional theory of superconductivity doesn't work in this situation. In a conventional metal, high-speed electrons are responsible for conductivity. But twisted bilayer graphene has a type of electronic structure known as a "flat band" in which the electrons move very slowly—in fact, at a speed that approaches zero if the angle is exactly at the magic one. Under the conventional theory of superconductivity, electrons moving this slowly should not be able to conduct electricity. But with great precision, the team was able to obtain a device so close to the magic angle that the electrons were nearly stopped by usual condensed matter physics standards. The sample nevertheless showed superconductivity. In their experiments, the research team demonstrated the slow speeds of the electrons and gave more precise measurements of electron movement than had been previously available. And they also found the first clues as to what makes this graphene material so special. The team discovered that quantum geometry plays a key role in allowing twisted graphene to become a superconductor. The geometry of the quantum wavefunctions in flat bands, together with the interaction between electrons, leads to the flow of electrical current without dissipation in bilayer graphene. Conventional equations could only explain about 10% of the superconductivity signal that was found, but experimental measurements suggest quantum geometry is responsible for 90% of what makes this a superconductor. The superconductive effects of this material can only be found in experiments at extremely low temperatures. However, the ultimate goal is to be able to understand the factors that lead to high-temperature superconductivity, which will be potentially useful in real-world applications, such as electrical transmission and communication. Overall, the study provides new evidence of how twisted graphene can become a superconductor, and the discovery of the key role that quantum geometry plays in this process could have significant implications for future technologies.








Comments

Popular posts from this blog

How to install siesta(DFT code) in ubuntu?

  Required libraries to download Siesta-4.1-b4.tar  (Try to download upgrade version) with some package ● lapack-3.8.0.tar.gz ● libgridxc-0.8.4.tar ● Xmlf90-1.5.4.tar.gz ● hdf5-1.8.21.tar.bz2 ● hdf5-1.10.4.tar.gz ● netcdf-c-4.6.1.tar.gz ● netcdf-c-4.6.2.tar.gz ● netcdf-fortran-4.4.4.tar.gz ● zlib-1.2.11.tar.gz Steps to install siesta ●First extract the siesta tar file. ●Then through the terminal go to Obj of siesta folder. (i.e$obj ) ● $sh ../Src/obj_setup.sh ● Type $cp gfortran.make arch.make ● Type ls, then we saw arch.make file inside obj folder of siesta. ● Finally, type $make Then we got siesta executable inside Obj folder which is ready to run. https://youtu.be/EI1vuPfeLPs

Google Quantum AI Takes Step Towards climbable Quantum Error Correction

Google Quantum AI has taken a significant step forward in the development of scalable quantum error correction, according to a new study published by the company. Quantum computers are prone to errors due to noise from the underlying physical system, which must be reduced for quantum computers to achieve their potential. One way to address this is through error-correcting codes, which use an ensemble of physical qubits to form a logical qubit that can detect and correct errors without affecting information. However, scaling up such systems means manipulating more qubits, which can introduce more logical errors. To address this challenge, the Google team demonstrated that a surface code logical qubit can lower error rates as the system size increases. They created a superconducting quantum processor with 72 qubits and tested it with two different surface codes: a distance-5 logical qubit on 49 physical qubits and smaller ones called distance-3 logical qubits on 17 physical qubits. The l...

Empowering Women for a Sustainable Future “Climate Change in Nepal”

Climate change is one of the most significant challenges facing humanity today, with devastating impacts on people, animals, and the environment. Nepal is one of the most vulnerable countries to climate change, with the Himalayan region being particularly affected. In this context, it is crucial to understand the intersectionality of climate change with gender and its impact on the people of Nepal, especially women. Women in Nepal are often the most affected by the impacts of climate change, as they are disproportionately responsible for household and community-level tasks such as food and water collection, which are affected by climate change. Women are also more likely to live in poverty and have fewer resources and opportunities to adapt to the impacts of climate change. One of the most significant impacts of climate change on women in Nepal is related to agriculture. Women in Nepal are responsible for up to 80% of agricultural work, but their access to resources such as land, water...