Skip to main content

Scientist Discovered: “New Powerful Family of 2D Materials”

Scientists have made a breakthrough discovery in the world of 2D materials, with the creation of a new family of 2D transition metal carbo-chalcogenides (TMCCs). This new family of materials is a combination of two well-known families of 2D materials - TM carbides (MXenes) and TM dichalcogenides (TMDCs) - at the atomic level. The research, conducted by a team of scientists led by Majed Ahmad, was a multi-disciplinary effort involving experts in material synthesis, electrochemistry, and materials theory. The team was able to successfully obtain single sheets of Nb2S2C and Ta2S2C through a combination of electrochemical lithiation and sonication in water. The parent multilayered TMCCs were synthesized using a simple and scalable solid-state synthesis followed by a topochemical reaction. 



The results of the study showed that the delaminated Nb2S2C outperformed both the multilayered Nb2S2C and delaminated NbS2 as an electrode material for Li-ion batteries. The team also observed a superconductivity transition at 7.55 K for Nb2S2C. Ab initio calculations predict that the elastic constant of TMCC is over 50% higher than that of TMDC, making TMCC a promising candidate for various applications in the fields of electronics and energy storage. The discovery of this new family of 2D materials has the potential to revolutionize the field of materials science and open up new avenues for research and development. The team's findings have been published in a leading scientific journal, and their work is expected to generate further interest and exploration in the field. Not only this, the discovery of the new family of 2D transition metal carbo-chalcogenides marks a major milestone in the field of materials science, and has the potential to shape the future of technology and energy storage.

Reference:

Majed, A., Kothakonda, M., Wang, F., Tseng, E. N., Prenger, K., Zhang, X., ... & Naguib, M. (2022). Transition Metal Carbo‐Chalcogenide “TMCC:” A New Family of 2D Materials. Advanced Materials34(26), 2200574.

Comments

Popular posts from this blog

Google Quantum AI Takes Step Towards climbable Quantum Error Correction

Google Quantum AI has taken a significant step forward in the development of scalable quantum error correction, according to a new study published by the company. Quantum computers are prone to errors due to noise from the underlying physical system, which must be reduced for quantum computers to achieve their potential. One way to address this is through error-correcting codes, which use an ensemble of physical qubits to form a logical qubit that can detect and correct errors without affecting information. However, scaling up such systems means manipulating more qubits, which can introduce more logical errors. To address this challenge, the Google team demonstrated that a surface code logical qubit can lower error rates as the system size increases. They created a superconducting quantum processor with 72 qubits and tested it with two different surface codes: a distance-5 logical qubit on 49 physical qubits and smaller ones called distance-3 logical qubits on 17 physical qubits. The l...

A New Researcher Develop an Economic Fabrication Technology for Carbon Nanotube-Based Composite Carbon Fibers

Carbon fibers are known for their exceptional mechanical properties, including high strength, stiffness, and resistance to deformation, making them highly sought after in various industries. Carbon nanotubes are known to further enhance these properties, but commercializing them has been challenging due to the high cost of production.  However, a recent study proposes a solution to this problem by developing an economic fabrication technology for carbon nanotube-based composite carbon fibers. The researchers focused on the use of a liquid crystalline wet-spinning process to produce polymer-carbon nanotube composite fibers that are highly oriented and possess superior modulus, strength, and electrical conductivity. The solvent used in this process is camphorsulfonic acid (CSA), which has extremely high acidity and readily protonates aromatic hydrocarbons. This allowed for the hybridization of CNTs and the polymer without the need for physical or chemical treatment. High-performance ...

How to install siesta(DFT code) in ubuntu?

  Required libraries to download Siesta-4.1-b4.tar  (Try to download upgrade version) with some package ● lapack-3.8.0.tar.gz ● libgridxc-0.8.4.tar ● Xmlf90-1.5.4.tar.gz ● hdf5-1.8.21.tar.bz2 ● hdf5-1.10.4.tar.gz ● netcdf-c-4.6.1.tar.gz ● netcdf-c-4.6.2.tar.gz ● netcdf-fortran-4.4.4.tar.gz ● zlib-1.2.11.tar.gz Steps to install siesta ●First extract the siesta tar file. ●Then through the terminal go to Obj of siesta folder. (i.e$obj ) ● $sh ../Src/obj_setup.sh ● Type $cp gfortran.make arch.make ● Type ls, then we saw arch.make file inside obj folder of siesta. ● Finally, type $make Then we got siesta executable inside Obj folder which is ready to run. https://youtu.be/EI1vuPfeLPs